Presentation Abstract

Title Size and Albedo of the Kuiper Belt Object 55636
Author Block James L. Elliot1, M. J. Person1, C. A. Zuluaga1, A. S. Bosh1, E. R. Adams1, T. C. Brothers1, A. A. S. Gulbis2, S. E. Levine3, M. Lockhart1, A. M. Zangari1, B. A. Babcock4, K. DuPré4, J. M. Pasachoff4, S. P. Souza4, W. Rosing5, N. Secrest6
1MIT, 2MIT & SALT, 3USNOFS, AAVSO & MIT, 4Williams College, 5Las Cumbres Observatory, 6U. of Hawaii.
Abstract Due to the small sizes and great distances of Kuiper belt objects (KBOs), it is difficult to determine their diameters. We report multi-chord observations of a KBO stellar occultation, which occurred on 2009 October 9 (Elliot, J. L., et al. 2010, Nature, 465, 897). We set up a network of 21 telescopes at 18 stations, spanning a distance of 5920 km perpendicular to the predicted shadow path for the 2009 October 9 stellar occultation by the KBO 55636. Of these stations, seven could not observe due to weather, nine reported non-detections, and two observed an occultation, both in Hawai'i: the 2.0-m Faulkes North telescope at Haleakala and a 0.36-m portable telescope at the Visitor Information Station at the Onizuka Center for International Astronomy on Mauna Kea (located at the Mauna Kea Mid Level). We find that 55636 (2002 TX300), which is a member of the water-ice rich Haumea KBO collisional family (Brown, M. E., et al. 2007, Nature, 446, 294), has a mean radius of 143 ± 5 km (for a circular solution). Allowing for possible elliptical shapes we find a geometric albedo of 0.88 +0.15/-0.06 in the V photometric band. This firmly establishes that 55636 is smaller than previously thought and like its parent body, Haumea, is among the most highly reflective objects in the Solar System. Dynamical calculations by two groups indicate that the collision that created 55636 occurred at least 1 Gyr ago (Ragozzine, D., & Brown, M. E. 2007, AJ, 134, 2160; Schlichting, H. E., & Sari, R. 2009, ApJ, 700, 1242), which implies either that 55636 has an active resurfacing mechanism, or that fresh water ice in the outer solar system can persist for Gyr timescales. This work was supported, in part by NASA Grants NNX10AB27G (MIT), NNX08AO50G (Williams College), and NNH08AI17I (USNO-FS).



Technical Support
Phone: 217-398-1792
Email: Help Desk

Pasadena Meeting Home

Events and Workshops

Embargoed: All findings are embargoed until the time of presentation at the meeting. "Time of presentation" means the start time of the Oral or Poster paper session in which the paper will be given, or the time of the corresponding press conference (if any), whichever comes first.

42nd DPS Program published in BAAS volume 42 #4, 2010.